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We define a generalized vortex to have azimuthal velocity proportional t o  a 
power of radius r-n. The properties of the steady laminar boundary layer gen- 
erated by such a vortex over a fixed coaxial disk of radius a are examined. Though 
the boundary-layer thickness is zero a t  the edge of the disk, reversals of the 
radial component of velocity u must occur, SO that an extra boundary condition is 
needed at  any interior boundary radius rE to make the structure unique. Numeri- 
cal integrations of the unsteady governing equations were carried out for n = - 1, 
0,  Q and 1. When n = 0 and - 1 solutions of the self-similar equations are known 
for an infinite disk. Assuming terminal similarity to fix the boundary conditions 
at r = rE when zt, > 0, a consistent solution was found which agrees with those of 
the self-similar equations when rE is small. However, if n = Q and 1, no similarity 
solutions are known, although the terminal structure for n = 1 was deduced 
earlier by the present authors. From the numerical integration for n = 4, we are 
able to deduce the limit structure for r+O by using a combination of analytic 
and numerical techniques with the proviso of a consistent self-similar form as 
rE-+O. The structure is then analogous to a ladder consisting of an infinite 
number of regions where viscosity may be neglected, each separated by much 
thinner viscous transitional regions playing the role of the rungs. This structure 
appears to  be characteristic of all generalized vortices for which 0.1217 < n < 1. 

1. Introduction 
A generalized vortex is a circulatory motion in which the azimuthal velocity 

V is a function of r ,  the distance from the axis of rotation. Simple examples are 
V cc r ,  corresponding to rigid-body rotation and V cc r-l, corresponding to a 
potential vortex. More general forms are common, for example, in the atmosphere 
and in vortex chambers. We shall be particularly interested here in flows in which 
Vcc Y - ~  where n is a constant. Such forms have been suggested as approximate 
fits of observed velocity distributions; thus Riehl (1954) reports that values of 
n between 0.4 and 0-6 are appropriate to hurricanes. Generalized vortices have 
attracted most interest in the past, however, because of the interesting properties 
of their associated boundary layers. 
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Suppose that the vortex is set up above a fixed impermeable plane z = 0 
perpendicular to the axis of rotation. As shown by Rott & Lewellen (1966), the 
equations governing the boundary layer near x = 0 may be formally reduced to a 
set of ordinary differential equations in which the azimuthal velocity V is of the 
form r-"g*(V), where 7 = z/r:(l+n)andthe radial velocityuisof theform r-nf "(7). 
The solution properties of the equations satisfied byf", g* have been the subject of 
much study. For n = - 1 (rigid-body rotation), Bodewadt (1940) determined the 
numerical properties of f*  and g", and Mcleod (1971) showed rigorously that 
solutions do exist. On the other hand, Goldshtik (1960) also showed rigorously 
that, when the Navier-Stokes equations are used for n = + 1 (the potential 
vortex), the corresponding equations have a solution only when the Reynolds 
number is small; Serrin (1972) was able to generalize the study by including 
another parameter in the equations, thereby obtaining new formal solutions for 
all Reynolds numbers. However, their physical significance as r - too is not 
yet clear. King 6: Lewellen (1964) carried out an extensive numerical program 
aimed a t  integrating the similarity equations for n > - 1 and were able, in spite of 
considerable difficulties, to obtain acceptable solutions if 0 2 n 2 - 1. As n in- 
creases toward zero, the structure of these solutions becomes more and more 
bizarre, velocity overshoots of as much as 60 % being reported and the boundary- 
layer thickness increasing with great rapidity. They ascribed their inability to  
obtain solutions for n > 0.1 to numerical difficulties and stated that solutions are 
possible for all n < 1. 

We are not aware of any successful attempts to extend appreciably the range 
over which numerical solutions can be found, although Kuo (1971) reports a 
numerical solution for n = 0.04. On the other hand, Olsen (private communica- 
tion) reports that he is unable to obtain a solution if n N 0.5. It seems likely that 
the non-existence when n = 1 is not isolated; instead there is a number no < 1, 
such that solutions exist if n < no and do not exist if n > no. The present study 
supports this view very strongly, and we propose that in fact 

no = 0-1217 

Another reason for studying these vortex boundary layers is that they throw 
further light on the behaviour of boundary layers, under a fluid in general 
circulatory motion, commoiily occurring in practice. Even though the surface 
near which the boundary layer occurs is plane, it must be of finite extent, so that 
self-similar solutions, if they exist, can a t  best be relevant only t o  those parts of 
the plane remote from the edge. Further, in all the self-similar solutions com- 
puted, the radial velocity changes sign repeatedly as 7 increases, so that the 
solution can be regarded neither as strictly an initial velocity profile nor as a 
terminating velocity profile. One might take an extreme point of view, and ask 
whether similarity solutions have a role to play in the structure of boundary 
layers on finite planes even if they exist, and, if they do not exist, what can be 
said about the structure, particularly near r = 0. The only other known case of 
non-existent self-similar solutions in fluid mechanics occurs with the Palkner- 
Skan equations, and the physical meaning to be attached is that separation has 
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occurred a t  an earlier stage in the development of the boundary layer. For the 
vortex problem, however, the pressure gradient is favourable. 

The KBrmBn rotating disk is an obvious example of a solution to the boundary- 
layer equations that is relevant to a finite plane, and it is of course also a self- 
similar solution. It is relevant to the finite problem because the radial flow is 
everywhere outward, so that edge effects cannot penetrate inward. For n = + 1 
(the potential vortex), the radial flow is everywhere inward, so that the boundary- 
layer equations for steady flow can be solved by forward integration from the edge 
of the disk inward. Burggraf, Stewartson & Belcher (1971) carried out such a 
calculation down to radii less than 5 yo of the disk radius, which was sufficiently 
close to the axis to allow a coherent description of the terminal boundary layer, 
even though no similarity solution exists for this case. It was found instead that  
the boundary layer divides itself up into two parts when r is small. There is an 
inner region of thickness 6cc r in which viscous effects are important but the 
azimuthal velocity is relatively negligible. This part of the boundary layer has a 
self-similar character and at the outer edge the radial velocity is equal to the 
azimuthal velocity in the potential vortex. Outside this part the flow is largely 
inviscid, the radial velocity falls to zero, the azimuthal velocity rises to its free- 
stream value and the particular shape of the velocity profiles depends on the 
previous history of the boundary layer. The numerical integration was started 
from the edge and advanced inward using a step-by-step method, and was 
successful because the radial velocity does not change sign anywhere in the flow 
field. 

I n  the present paper the aim is t o  develop a comparable body of knowledge 
about the boundarylayer when In[ < 1. To this end, four values of n ( - 1 ,  0,0.5,1) 
were considered, and a new method of integration developed to determine the 
flow field. It has already been mentioned that all solutions for n < 1 show sign 
reversals in the radial velocity; this means that forward integration from the 
edge of the disk should become unstable. The similarity solutions in particular 
exhibit these sign reversals. Now it proves impractical, even when n = I ,  to 
compute the solution right up to r = 0. We therefore considered the possibility of 
obtaining solutions for 1 3 r 3 rE, where rE is sufficiently small that the structure 
of the terminal solution as r + 0 can be inferred from knowledge of the solution 
near Y E .  But a solution in 1 2 r 2 rE is not uniquely determined by the conditions 
on the disk, in the free stream and a t  the edge of the disk, since we can apply 
arbitrary conditions on that part of the line r = r E  where u > 0. Physically, the 
reason is that small disturbances travel parallel to the disk with the local velocity, 
and hence move outwards if u > 0 and inwards if u < 0. They also diffuse across 
the boundary layer, of course. A change in the boundary condition a t  r = rE,  a t  a 
point where u < 0, causes a disturbance which immediately travels outside the 
region of interest, and is therefore irrelevant, but a change, at a point where 
u > 0, travels into the region of interest and modifies the flow there. A fuller 
discussion of this cause of non-uniqueness is given by Brown & Stewartson (1969). 

The numerical study of parabolic equations with boundary conditions imposed 
at two longitudinal stations is still in its infancy, and to our knowledge only one 
successful solution has been published. This is by Hall (1969), who considered the 

48-2 
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impulsive motion of a flat plate, the governing equations being reducible to a 
problem of this sort. A complete solution was obtained by attacking the original 
unsteady two-dimensional problem and regarding time as an integration strip. 
Here we follow Hall by introducing time as an additional variable, and carrying 
the integration forward in time until the solution is substantially steady. This 
criterion is not always easy to enforce for the solution may change slowly with 
time, but nevertheless evolve into a different structure over a long period, as 
Pearson (1965) has noted. Our results are subject to this problem; nevertheless, 
we can draw a fairly complete picture as t o  the terminal structure of the flow. 

Clearly some conditions must be imposed a t  r = rE,  and we choose them as 
follows. To permit the terminal boundary layer to evolve as a similarity solution 
(when it exists), the equations of motion can be written in terms of the variable 

Z = z / d ,  (1.1) 

where p = &(n+ 1)  for the conventional similarity solutions. Then, a t  those 
points on the line r = rE at which T L  > 0, we require 

where these derivatives are evaluated on the line 2 = constant. Since condition 
(1.2) is consistent with similarity solutions regardless of the size of u, it also 
provides a test for whether or not such solutions exist. For, if (1.2) is not even 
approximately satisfied on r = rE when u < 0 and rE is small, then a self-similar 
limit of the form assumed is not being approached as rE --f 0. It was found that 
for n = - 1 and n = 0, with p" given as above, consistent numerical results were 
obtained, closely approaching the known similarity solutions. However, to 
obtain consistent numerical results for n = 0.5, it was necessary to alter the value 
of p as suggested by our analysis of 3 7. 

2. Equations of motion 
Let r'k, 0, z* be a set of cylindrical polar co-ordinates with r* measuring distance 

from the z* axis. Suppose that the fluid occupies all of space except for a fixed 
finite plane defined by z* = 0, 0 < r* < a. The velocity of the fluid at  almost all 
points of space, but specifically not in the neighbourhood of the plane, is circu- 
latory with 

U* = 0 ,  v* = V*(r* ) ,  w* = 0, 

where u*, v*, w* are the velocity components in the r*, 0, z* directions respec- 
tively. The fluid satisfies the no-slip condition on the plane so that 

(2.2) u* = v* = w* = 0 a t  z* = 0, y* < a .  

We wish to study the boundary layer induced by this vortex in the neighbonrhood 
of the plane, and for this we make the additional assumption that it is initiated at  
the outside edger* = a and grows inwards. The subsequent study of the boundary 
layer is consistent with this hypothesis. The usual boundary-layer arguments 
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then show that the pressure is constant across the layer of thickness 8, and that 

. . . 

(2.3) 

In  fact, writing 
r = r*/a, x = 

v = v*/V*(a), w = w* ___ 

the momentum equations governing the motion in the boundary layer reduce to 

and 

The equation of continuity may conveniently be written in terms of a stream 

The boundary conditions available to us are 

$ = u = v = w = O  at z = O ,  r < l ,  ( 2 . 7 )  

u = 0 ,  v = l  at r = l ,  z > O ,  (2.8) 

and u+O, v+V(r) as z-fco, r < 1, (2.9) 

but we shall find that these are not sufficient to specify the solution completely. 
If the integration is terminated a t  r = r,, then we must also assign values to u 
and v a t  all points of the line r = rE a t  which u > 0. 

In  this paper we shall usually take V = rn. 

3. The structure as z --f co, and as r -+ 1 - 

For fixed r < 1, we can expect that w approaches a finite limit W(r)  as x - f  co, 
from the equation of continuity, and this is confirmed both from the numerical 
studies and from the asymptotic structure of the solution, which we shall now 
investigate. We write 

u = .il, v = V(r)+v", w = W(r)+G,  (3.1) 

substitute into the governing equations, and neglect squares and products of 
all tilda quantities. This is justified when z is sufficiently large provided the 
limits, as x + 00, are approached smoothly. Then .ii and v" satisfy 
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Clearly .ii and B depend exponentially on z and so we write 
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.ii = A(r )  exp(sz}, v" = B(r )  exp {sz], (3 .3 )  

where A ,  B, s are functions of r to be found. On substituting these expressions 
into (3.2)) we find that such a solution is possible only if 

and then 

2 v  d 
r2 dr 

( s2 -  Ws)2+--(rV) = 0, 

z B + ( s 2 -  Ws)A = 0. 
r 

It follows immediately from (3.4) that, if 

d 
- ( r 2 V 2 )  > 0, 
dr (3.6) 

i.e. if the square of the circulation increases with radius, then s must be complex, 
so that u and v both oscillate about zero with an amplitude which diminishes 
exponentially. It is interesting to note that this criterion is the same as that of 
Rayleigh (1916) for the stability of a fluid motion to inviscid disturbance. For the 
swirling flow of special interest here V = rn, and so 

s 2 -  Ws = +i[B(I-n)]tr-(l+n), if n < 1.  (3.7) 

Thus, it is possible to find two values of s such that Re s < 0. For n = 1, there is 
only one acceptable solutions = W and the A and B are independent. Therefore, 
if n. = 1 we can expect that W < 0, and so it proved in the numerical study. 

With n < 1 the behaviour of u and v as z-+ co is oscillatory for all r < 1. This 
seems to  be at variance with the initial structure of the boundary layer at  
r = 1 - given by Stewartson (1958), who showed that the structure of the solution 
near r = 1 is of the form u = ( i - r ) W ( u ) ,  

PU = ( 1  - r ) -QF - ~vF'], 
w = 9(u), 

where u = ./(I - r)*, (3.9) 

and the primes denote differentiation with respect to V. 
Here 9- and 9 satisfy 

g7" - IF%-" + $ 9 ' 2  = 1 - 9 2 )  9" - = 0, (3.10) 

with boundary conditions 

F ( 0 )  = P ( 0 )  = 9 ( 0 )  = 0, F"l'(.O) = 0, 9 ( m )  = 1. (3.11) 

The relative errors in (3.8) are O( 1 - r ) ,  and a, formal expansion can indeed be set 
up in integer powers of ( 1  - r ) ,  the coefficients of which are functions of u that can 
be determined seriatim. 

It can be shown from (3.10) that 9' has only one sign, which is in apparent 
contradiction to (3.7) and (3.3). A resolution can be obtained on noting that, 
according to (3.8)) 

w N $ ( i - r ) - W ( m )  when V $  1, ( 1 - r )  < 1. (3.12) 
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If F(co) > 0, (3.10) could have no solutions satisfying %’(a) = 1, s(0) = 0, 
whence in (3.7) W must be large and negative. We then have, for r+  1, 

i 
W 

s = W*-(2-2?&)3+ ..., 

and U N  (3.13 a)  

v N l-Cexp{Wz}cos -[2(1-n)]++6 +..., (3.13 b)  

when I I - YJ < 1; here C and 6 are functions of r to be found. A match between 
(3.13) when z < I WI and the solution of (3.10) when u > 1 now follows easily if 
we make the additional assumption, verified subsequently, that 161 < I. For 
then (3.13) tells us that +‘I, v z l-Cexp{Wz} (3.14) 

k I 

s 
“2(1-n)1+ w u E C exp { Wz} 

when z < W .  On the other hand, from (3.10), when u >> 1 

9 z 1-Elexp{3u9(co)/4}, 9’ M b2+ ~ exp{3uF(a)/4}, (3.15) =-I 3 6  (00) 

where, using Mack’s (1962) accurate solution of (3. lo), 

El = 4.46, E2 = 8.20. 

On expressing u in terms of the variables z and (1 - Y), and comparing with (3.14), 

E2 (3.16) 
we see that 

6 = - [2( 1 -n) (I  -~)]4,  C = El, 
2El 

and the match is complete. Summarizing, when z > (1 - r)% and ( 1  - Y) < 1, 

Thus, the oscillations in the radial velocity component are present in a rudi- 
mentary form in the initial profile at  r = 1, although for small values of ( I - Y) they 
occur a t  distances from the plane ,- (1 - r ) 4 ,  and the magnitudes are exponen- 
tially small. From a numerical point of view, the presence of these oscillations 
means that, as posed in (2.4)-(2.9), the boundary-value problem does not have a 
unique solution for any r < 1, and additional information must be supplied to 
ensure uniqueness. 

4. The numerical computations? 
The sign reversals in the radial velocity, analysed in 3 3, not only imply non- 

uniqueness, but also ensure that a valid numerical procedure for solving the 
boundary-value problem (2.4)-(2.9)) by marching in the radial direction, will 

t The emphasis here and in 95 is on the steady-state results. Additional information 
on the time-dependent, numerical results is given by Belcher (1970). 
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utimately become unstable. Cooke (1966) and Anderson (1966) both attempted 
such a calculation for n = - 1 by forward integration from the edge of the disk 
inward. Cooke's method operated satisfactorily down to 75 yo of the disk radius, 
but failed t o  converge to a unique result for smaller radii. On the other hand, 
Anderson's procedure functioned down to 4 0 %  of the disk radius, at  which 
point the results agreed closely with King & Lewellen's (1964) solution of the 
Bodewadt problem. Anderson's success is surprising, since both non-uniqueness 
and instability would be expected, owing to  the appearance of regions of radial 
outflow. Consequently, it was decided to use the time-dependent approach here. 

I n  setting up the numerical procedure, variables were selected that had been 
shown to accentuate the relevant details of the flow for n = 1. Thus a composite 
'similarity ' variable < was introduced in place of z ,  defined as 

5 = z y - W + f i ) (  1 - y ) 4 ,  (4 .1a)  

where the factor (1 - r)-)  effects the proper similarity behaviour near r = 1, (3.9),  
and the factor r-k(l+n) is the scaling appropriate to any local flow structure, near 
r = 0, that might develop independent of conditions a t  the edge Y = I. The 
importance of a gradual approach to  the axis has been demonstrated for the 
potential vortex. This was accomplished by introducing a new radial variable 

6 = -logr, ( 4 . l b )  

so that the edge of the disk now appears a t  [ = 0, and the centre is pushed off 
exponentially to $+ 00. The velocity components u, v, ware scaled accordingly, as 

urn = (1 - e-E)*f(<, 6, r ) ,  

vr* = 9(5,5,7), ( 4 4  i wr*(l+n) = (1 - e-c)-*h([, 5 ,7 ) ,  

where r is a non-dimensional time, 
7 = t" v*(C&)/a. 

I n  these new variables, the equations of motion (2.4),  (2 .5 )  take the form 

(4 .3)  
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The form of the similarity equations for the edge of the disk result by setting 
f = 0, and those for the axis by letting (-+a. 

For f-+ 0, (4.3) indicates that the time derivatives are singular; i.e. the steady- 
state solution is established immediately at  the edge of this disk. Consequently, 
Stewartson’s (1958) profiles were applied as boundary and initial conditions 
for 5 = 0, r 3 0. For 6 > 0, the no-slip condition (2.7) was applied at 5 = 0, and 
the inviscid vortex given by (2.9) was required at Q for T > 0, where Q is the value 
of 5 at the outer edge of the mesh. For r = 0, this outer-edge condition was applied 
right down to the disk, corresponding to ‘switching on’ the viscosity a t  T = 0. 
Finally, at the innermost radial station ( = cE, the boundary condition (1.2) was 
applied a t  points for which f is positive, as discussed in $ 1. In  effect this procedure 
is like that adopted by Reyhner & Flugge-Lotz (1968), setting ua/ax = 0 in 
regions of reversed flow, justified in their problem by the fact that u is small in 
such regions. In  contrast, for vortex flows u is not small and the justification for 
use of this condition (at the innermost radial station only) is instead that a/af = 0 
when the proper similarity variable is used. As will be seen in $6, the conventional 
similarity variable 7 = .z./&l+n) is proper only for n < no 3 0.121 7; for no < n < 1, 
the proper similarity variable for regions in whichf > 0 is inferred in 3 7. 

Equations (4.3) were solved numerically using both explicit and implicit finite- 
difference schemes. Differences were centred in r and < and uncentred in the 
downwind direction in 6. Since the most extensive results were obtained using the 
implicit scheme, the explicit-difference equations will not be described here. 

The finite-difference mesh was defined by the node-points 

f i = ( i - i ) A f  ( i=  1 , 2 , 3  ,..., M + l ) ,  

t;j = (j- l)AC ( j  = 1,2 ,3 ,  ..., N +  l), 

where M = fE /Af  and N = CmlAC. If qij represents a velocity component at  time 
r and qij that at time r + A r ,  the difference equations are written at the inter- 
mediate time (7 + &AT) in the manner of Crank & Nicholson (1947). Thus, velocity 
components are replaced by mean values 

q+qij = *(qij+qij) ,  

time derivatives by the centred difference 
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partially explicit. This was done to reduce computer storage requirements, 
since each [ station is then uncoupled from the others, permitting iteration to 
completion a t  a given time step and 6 station without sweeping the entire mesh 
a t  each iteration. For a given time step, the equations were solved much as in the 
previous study of the potential vortex (Burggraf et al. 1971), using Gaussian eli- 
mination for simultaneous solution at  all points at given &, r, and iteratingat each 
time step until a desired degree of convergence was obtained (say ]q’ - q /  < 10-5). 

The numerical results exhibited two time scales; the radially inward flow next 
to the wall adjusted quickly, requiring a small time step for stability of the 
computation. However, the bulk of the flow appeared to possess a wave-like 
nature with much longer time required to settle down to a steady state. This 
problem is aggravated by increasing EE; as a result, even though a variable time 
step was used, several thousand time steps were required to reach the steady 
state. A typical time step was Ar = 0.001, at  r = 0, although larger values were 
used as the computation progressed. All the results presented here were obtained 
with mesh size A t  = 0.1 and A< = 0.3, chosen as a compromise between accuracy 
and the practical requirements of storage capacity and computation time. The 
computations were performed by an IBM 360/75 digital computer. A typical 
computation time to advance I00 time steps for a flow region 

O Q ( Q 3 ,  0 < 5 < 3 9 . 9  

was 2 minutes for the explicit program with short time step, and 6minutes for the 
implicit program with longer time step. 

The accuracy of the computations was assessed in two ways, first by comparison 
with available numerical solutions from earlier studies for the cases n = - 1,0  and 
+ 1, and second by checking the momentum-integral balance. For the radial 
balance, the momentum-integral equation is 

and a similar expression holds for [8g/a<]c=o. Thus the shear a t  the surface of the 
disk can be evaluated by integrating functions of the computed velocity profiles 
and compared with the shear evaluated by direct differencing of the same pro- 
files. Generally the comparison was good as long as the mesh was sufficiently 
thick. A more explicit comparison will be given following the discussion of the 
velocity profiles. 

Radial velocity profiles for n = - 1 ( rigid rotation) are shown in figure 1. These 
profiles, corresponding to 7 = 35.0, were computed for a region 0 6 6 6 2,  
0 < < 6 30 using the explicit program with time step Ar = 0.01. At r = 35.0, the 
maximum time derivative in the flow field had been reduced to 0.048, compared 
with an initial value of 26.1. The residual unsteady motion appeared to be oscil- 
latory with sufficiently small amplitude that the results in figure I are essentially 
those of steady flow. Boundary condition (1.2) with p” = 0 was applied at  the 
innermost radius = 2 ,  corresponding t o  a similarity requirement on the reversed 
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0.2 0 -0.2 -0.4 -0.6 

u/r(  1 - r): 

FIGURE 1. Radial velocity profiles, n = - 1. r: . . . . , 1.0; - - -, 0.607; - - - - -, 0.368; 
- . . -, 0.223; --, 0.135; 0, Browning ( r  = 0) .  

flow. The encircled points in the figure are from the similarity solution of Brown- 
ing (Schlichting 1968), corresponding to r = 0. King and Lewellen (1964) have 
obtained nearly identical results. As indicated by the results in figure 1, the peak 
value of the normalized radial velocity, u/V(r) ,  is a convex function of r ,  reaching 
its maximum at r E 0.4. This behaviour seems to be quite reliable, since our 
computed values agree with 1+ % with those of Anderson (1966), while the 
momentum-integral calculation of the radial surface shear checked with 2 yo for 
0 6 6 < 2. The evidence for the Bodewadt similarity solution as the proper 
terminal solution for r -+ 0 is actually stronger than indicated by figure 1 ; if the 
similarity solution is evaluated at the local radius, accounting for the factor 
(1 - r)-*, the computed results at r = 0.368 deviate from the similarity solution 
by at most 2 yo and those at  r = 0.135 by at  most 1 yo. It is also of interest that, 
in terms of the variables used here, the radial surface shear varies by at most 16 yo 
over the entire disk (see table 1). The tangential surface shear, however, nearly 
doubles from the edge to the centre of the disk. 

Similar results for the case n = 0 are shown in figure 2 .  The region in space was 
again 0 < 6 < 2,  0 < 5 Q 30. The explicit program was used with Ar = 0.001 
for 0 < T < 0-5 and Ar = 0-005 for 0-5 < T < 15-5. The maximum value of the 
time derivative was 0.006 at r = 15.5, occurring at  5 = 0-6 in the slow-to-settle 
outer region. The computation was continued to larger values of time with the 
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FIGURE 2.  Radial velocity profiles, n = 0. Curves labelled 
as in figure 1. 0, King & Lewellen (T = 0). 

implicit program with negligible changes in the results. The velocity profile near 
the wall, up to the first maximum, appears to be as close to the terminal similarity 
profile as it was for the case n = - 1. Further from the wall, however, it is evident 
that similarity is approached much more slowly Ghan for the case n = - 1. The 
radial surface shear for n = 0 increases monotonically as r decreases, varying by 
about 124 yo over the disk (table 1). In  strong contrast t o  the case n = - 1, the 
tangential surface shear for n = 0 is nearly constant, increasing by only 10 yo 
from the edge to the centre of the disk. The momentum-integral values for the 
surface shear were within 4 % of the direct-difference values for 0 < 6 < 1-9. 

The potential vortex, n = 1, was chosen as the third test case; the resulting 
steady-state radial velocity profiles are given in figure 3. The flow region in- 
cluded for the unsteady computation was again 0 6 < 2, 0 < g < 30. The 
initial time step using the explicit program was 0.0001, but Ar was increased to 
0-0005 for r > 0.1. The solution achieved its steady state, shown in figure 3, by 
the time 7 = 1.35. Although the time step was drastically reduced in going from 
n = - 1 to n = + 1, the total number of time steps to achieve the steady state 
was approximately the same for each case. Noting that the variable r is measured 
in units of radians of external flow rotation at the outer edge of the disk, and that 
the potential vortex rotates faster at smaller radii, it is reasonable that the 
boundary layer for the potential vortex should settle down to its steady state 



766 R. J .  Belcher, 0. R. Burggraf and K .  Stewartson 

28 

24 

20 

16 

5 

12 

8 

4 

0 

I I I I 

0 -0.2 -0.4 -0.6 -0.8 -1.0 

ur / ( i  - r )+  

FIGURE 3. Radial velocity profiles, n = 1. Curves labelled 
as in figure 1.  0, Burggraf et al. ( r  = 0.135). 

much faster than that for rigid rotation. The encircled points are samples from 
the more accurate computation obtained by direct solution of the steady-flow 
equations (Burggraf et al. 1971). We attribute the difference between those results 
and the present results to the coarser mesh used in the unsteady program. Note 
that no boundary condition a t  rE = 0.135 was utilized for this case, since the 
radial flow is everywhere toward the axis. 

From the evidence of the three test cases discussed above, we see that when 
similarity exists, it serves as a terminal solution for the flow near the axis, that 
the boundary condition (1 .2)  applied a t  the inner radius of the mesh produces the 
expected similarity behaviour, and that the finite-difference method and mesh 
characteristics used here provide results sufficiently accurate to reveal the struc- 
ture of the various types of vortex boundary layers. With this assurance, we now 
turn to the case n = +, for which no earlier solutions are available. 

5. Numerical results for n = 0.5 

We have proposed in Burggraf, Stewartson & Belcher (1971) that a simple 
similarity solution is not the proper terminator of the boundary layer for r + 0 
if n > 0.1217,  and in fact a double-structured boundary layer was shown to be 
consistent with numerical results for n = 1. However, for n = I ,  the boundary 
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layer does not exhibit reversed flow, as would be expected for n < 1. To test our 
multiple-structure hypothesis for n < 1, it was decided to numerically compute 
the boundary layer for the generalized vortex with n = 4, medial in the expected 
range of non-similarity 0- 12 17 < n < 1. 

Initially the explicit program was used for the region 0 < 5 < 2, 0 < [ Q 39.9, 
withAr = 10-4f0r0 < r < 0-05andAr = 0~001for0~05 < r 6 2.55.Whenr = 2-55 ,  
the profiles were approximately stationary, but it appeared that a closer ap- 
proach to the axis would be necessary. Extending the region to tE = 3 with the  
explicit program, the initial time step had t o  be reduced to lop5, requiring 
excessive computer time. The implicit program was then developed, permitting 
stable computations for tE = 3 with a time step of lop2. Nearly stationary profiles 
were then attained over the extended region at r = 2.83. I n  making these 
calculations, condition (1.2) with p" = 3 had been applied a t  boundary points 
5 = tE for which f > 0. One effect of extending the mesh from EE = 2 to L& =' 3 
was to produce changes of 20 % in the maximum value of the steady reversed- 
flow speed at ( = 2. Furthermore, condition (1.2) was not satisfied even approxi- 
mately a t  points on the boundary g E  = 3 for which f < 0. Consequently, either 
tE = 3 ( rE = 0.050) is not small enough or p" in (1.1) should not be the similarity 
value of 2. When simple similarity fails a generalization of the earlier analysis of 
the potential vortex (cf. $7)  suggests that the appropriate outer variable is that 
of (1 .1)  with p" = 0.281 for n = Q. Using this value in condition (1.2),  the 
computations were continued to r = 2.87, by which time the solution had again 
achieved nearly steady-state conditions. The 5 derivatives at  gE = 3 for f < 0 
were now small and, as will be seen, these numerical results are consistent with 
the analytical structure given in 5 6 and $ 7. 

The computed flow pattern in the boundary layer for n = Q is shown in figure 4, 
in terms of the (5, g) co-ordinate system. Over the outer half of the disk 

(0 < 5 < 0.7) 

the flow is everywhere downward toward the surface, while the flow is primarily 
upward over the inner half of the disk. The oscillations in the radial flow build up 
quite rapidly as ( increases, with apparently ever-increasing amplitude. The 
peaks and troughs of the streamline contours appear to exhibit similarity 
behaviour along the upward curving contours labelled? Z = 3-282 and Z = 6.565, 
where Z = z/r0.281, consistent with the boundary condition applied a t  tE. For 
later reference, the inviscid nature of the flow in this region is suggested by the 
nearly constant value of rv ( z 0.37) indicated by the numerical values a t  tagged 
points on the streamline II. = - 0.30. 

The radial development of the steady velocity profiles is shown in figures 5-7. 
I n  each of these figures two solutions are presented, the dashed curves for 
boundary condition (1.2) with p" = 0.750, and the solid curves for (1.2) with 

Near the surface the radial flow, figure 5, exhibits a self-similar behaviour in 
that the three profiles shown for r = 0.368, 0.135, and 0.050 approach a single 

p" = 0.281. 

f The significance of the numerical values 3-282 and 6.565 is explained in $7.  
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FIGVRE 6. Azimuthal velocity profiles, n = 0.5. Curves labelled as in figure 5. 

asymptote near < = 0. By contrast, the outer flow exhibits no such behaviour, 
and the profiles appear to be diverging rapidly as r+ 0. This behaviour is quite 
unlike that shown for the cases n = - 1 and n = 0, which suggested self-similarity 
for all 5 when r 3 0, but instead is much like the double-layered structure of the 
boundary layer for the potential vortex (Burggraf et ab. 1971). On the other hand, 
the tangential velocity profiles of figure 6 appear to diverge for all 5 > 0, which 
again reminds us of the potential vortex, for which the tangential velocity in the 
lower deckof the boundary layervanishes relative to the radialvelocity in the limit 
r -+ 0. Consequently these numerical results for n = 4 confirm the idea of a multi- 
structured terminal boundary layer. It is significant in figure 5 that the thickness 
of the region, for which aflagis positive, grows rapidly as r decreases, whereas the 
region immediately above, for which aflag is negative, has about the same thick- 
ness for each value of r. 

The vertical velocity, shown in figure 7, at first sight gives the appearance of 
erratic behaviour. The trends shown are supported by the analysis, however. 
Near the surface, a small region of downflow appears, not appearing in the results 
for n = - 1 or n = 0. For similarity solutions we introduce a stream function as 

rnzc = Yi(q), 7 = xrd(n+l). 
40 FLM 52 
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Then continuity of mass requires that the vertical velocity should satisfy 

w&n+U = 1 z(n- 3 ) Y d r )  + B(n+ WiYXr). 

Sufficiently near the wall, rnucc - 7, so that 

wr*(n+l)cc - &( 3n  - i)r2. 

Hence a downflow region develops near the surface for n > +, gradually increasing 
in extent with increasing n, until it covers the entire boundary layer for n = 1. 
Above this downflow region (for n = +), w increases nearly linearly with [ until u 
changes sign at  about g = 13.5. The slope and the peak value of w in this linear 
region increase as r+ 0, consistent with the asymptotic behaviour of the inner 
viscous region analysed in $6.  Above < z 13.5, the radial velocity changes sign, 
and boundary condition (1.2) comes into play. Following the solid curves in 
figure 7, for p” = 0.281, the upflow quickly peaks at about the same point as the 
negative peak in u, and a second andlarger downfiowregion develops for r = 0.050. 
This again is consistent with the analysis of $7 ,  which indicates that u returns 
from its peak positive value to a new peak negative value through a thin viscous 



On generalized-vortex boundary layers 771 

shear layer, and that in this layer w is proportional to u for sufficiently small r .  
The behaviour of the graph in figure 7 strongly supports this analytical descrip- 
tion in the range 20 < 5 < 28. 

It is evident in figures 5-7 that a thicker mesh would be desirable, since the 
slopes of the velocity profiles are not negligible at  Q = 39.9. This problem is 
especially visible in the momentum-integral check, which, as the radius is re- 
duced, serves as a progressively deteriorating standard for the surface shear. 
Over the range 0.135 < r < 1, the momentum-integral values for the surface 
shear differed by up to 8 % from the direct-difference values. The effect of in- 
sufficient mesh thickness was especially pronounced at smaller radii, with the 
momentum-integral value of radial shear plunging to 20 yo of the direct-dif- 
ference value at r = 0.050. This difficulty was observed previously in the com- 
putation for the potential vortex (Burggraf et al. 1971), where the problem was 
cured by increasing mesh thickness with little change thereby produced in the 
velocityprofiles, except near the outeredge of the mesh. Similarly, we feel that the 
present calculations for the generalized vortex with n = g are quite satisfactory 
except near the outer edge of the mesh, and it is shown in table 1 that the values 
of wall shear obtained by direct-differencing agree very well with the theoretical 
structure developed in $ 6. 

6. Terminal behaviour: the wall layer 
The main conclusion we draw from the numerical studies is that a single- 

structured self-similar velocity profile is very unlikely to exist in the limit t-+ 0 
when n = g. In  the theoretical study described $6 and $7, we shall make the 
assumption that no such structure exists, and look instead for analogous results 
to those found when n = 1. For that vortex it was shown by Burggraf et al. that, 
instead of a single terminal structure, the velocity profile must be divided into 
two parts: an inner layer in which viscous forces are significant and the motion of 
the fluid is largely directed radially inwards towards the axis, and an outer layer 
in which viscous forces may be neglected. Our aim in $ 6 is to give a corresponding 
study for a swirling flow with n = 4, and also to discuss other values of n for which 
the ideas might be relevant. 

We make the same assumptions as for n = 1, namely that the motion is self- 
similar, and viscous forces are important but that u2 $ v2. Then the similarity 
variable must be 7 = z / T ~ ( ~ + ~ )  and, on writing 

@ = r4(3-fiW0(7), (6.1) 

we find that; Y [ + ~ ( 3 - n ) Y o Y 6 + n Y h 2  = I ,  ( 6 . 2 ~ )  

with boundary conditions 

Yo(0) = Yi(O) = 0,  Yh(00) = -n-*. (6 .2b)  

The condition on Y; as y -+ co is partly fixed by the requirement that viscous 
forces become negligible when 7 9 1 and so nYh2-+ 1. The sign of Yh(co) can be 

49-2 
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in the wall layer, n = 0.5. 

decided from the physical argument that, in the absence of an azimuthal velocity, 
the effective pressure gradient V2/r  must drive the fluid radially inwards, towards 
the axis. The numerical studies confirm the choice of sign. The governing equation 
is one of the family of Falkner-Skan equations, and is an example of the back- 
ward-facing boundary layer studied by Goldstein (1965). It may easily be shown 
that, when 7 9 1, 

I 
(6.3) y n u  yh = - - + C(0)7--4n/(3-N + . . . , 

4% 
where C(0) is a constant and for n = 4 has been computed to be 0.384. In  figure 8 
a comparison is made between the solution of (6.2) and the numerical solution of 
the finite disk problem at various values of r .  

It seems certain that real solutions of (6.2) exist for all n > 0, but there clearly 
are no real solutions if n < 0,  so that we may conclude that a multiple structure 
of the kind we have in mind here is impossible if n < 0. This is in line with our 
numerical results when n = - 1, and with the successful computation of the 
equations governing a simple terminal structure when n < 0. We shall now 
demonstrate that the structural properties of w in the lower layer provide an 
even more stringent condition on n for the existence of a multiple terminal 
structure. 
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For, as we have already seen in the discussion of the solution when n = 1, if $ 
is given by (6.1) and (6.2) the appropriate form for v when r < 1 is of the form 

rnv = +y,t(7), (6.4) 

where A rnust be chosen so that the viscous term in the equation governing y A  is 
negligible when 7 B 1. On substituting into the azimuthal equation (2.5), we 
find that yn satisfies 

subject to yA(0) = 0. Since $i-+-n-* as q-tco, it follows that for general A, 
Iy,( increases exponentially with 7; only for a discrete set A, (i = 1,2 ,3 ,  ...) of 
values of h can (yhl grow algebraically with 7, in order that the viscous term in 
(6.5) is negligible when 7 B 1. Thus, if n = 8, the first few values of A, are 

yi+$(3-n)Yoy;-(A+ l -n)Y;y ,  = 0, (6.5) 

A, = 0.3003, A, = 2.5178, A, = 4.7819, A, = 7.0727. 

An essential requirement for the success of the line of argument being pursued 
in this section, however, is that hi > 0, for otherwise the basic assumption 
u2 B 02 is violated. A numerical study of the smallest value of A for various n, 
summarized in figure 9, leads to the conclusion that hi > 0 for all i only if 
n > 0.1217. Hence, our assumption of a multiple structure breaks down if 

n < 0.1217, 

which is a stronger criterion than that (n < 0) deduced from the equation for 

In  the particular case n = 8, a check on the validity of the model can be made 
by comparing the computed value of av/ax (using the data of table 1) with the 
form predicted by (6.4), using the lowest acceptable value of A, namely 0.3003. It 
is found that 

is very nearly constant and seems to be approaching 0.512 as r+O. Using this 
number to provide a numerical factor for ynl(7), a comparison was made between 

9 0 .  

~(3n-W av/& (6.6) 
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FIGURE 10. Comparison of azimuthal velocity profles with asymptotic formula for wall 
layer, = 0.5. - , (6.4); plotted points, numerical solution. r :  0, 0.368; 0, 0-135; 
A, 0.050. 

the computed proides and the fundamental similarity profile; it is displayed in 
figure 10. The agreement shown there, and in figure 8, is sufficiently encouraging 
for us to claim, with confidence, that (6.1) and (6.4) correctly describe the struc- 
ture of the inner layer as r 3 0. 

Let us now consider the behaviour of (u, v) as q -+ 00 and the inner layer merges 
with the outer structure. From (6.5), since yA is algebraic at infinity and 

n+$; M - 1, 

YAi M Ai[7n-S]2(”+l-n)/(3-n) as q +a, (6.7) 

or ++hi-n yAi M Ai[ - $]2(hi+l--n)i(3-n) as 7 + 00. (6.8) 

The Ai are constants to be found; in particular, by fitting the solution of (6.5) 
to the numerical results given in figure 6 ,  we find A ,  = 0.790. 

In addition to the eigenvalues associated with (6.5),  the equation for ‘Ye has 
eigenvalues that also make a contribution to the form of v when 7 > 1. However, 
this contribution appears through forcing terms on the right-hand side of (6.5) 
arising only from the inviscid terms in (2.5). It follows that the contribution is 
absorbed into 3 when the form (6.8) is used, and we conclude that, when q 9 1, 

m m 

i= l  i = l  
rv M 2 yl+Ai-nyAi M Ai( - $)2@i+l-n)/(3--n). (6.9) 
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The eigenvalues associated with (6.2) can be found by writing 

7if = rg(3-n)[Yo(r])+r~Y,(r])+ ...I, (6.10) 

substituting in (2.4) and neglecting v2 and YE. A linear ordinary differential 
equation of a type similar to (5 .5)  then results forY,. On requiring that the viscous 
term Y: is negligible when r] 9 I or, equivalently, that the growth rate of Y, is 
then algebraic, we h d  that p must take on a discrete set of values p4 (i = 1,2, 
3, . . .), of which the four lowest are 

pl = 2.4679, p2 = 4.6745, p3 = 6.9269, p4 = 9.2072, (6.11) 

when n = +. On examining the form of Yp when 7 9 I, it may be verified that 

yp w &n( -yo ~(3--n)/2 ) -  2 k  2n) / (34 ) .  (6.12) 

The discussion of the conversion of the structure revealed by (6.12) into a 
form of u appropriate to the structure of the outer layer analogous to (6.9) will 
be dealt with in 9 7. 

7. Terminal behaviour : the ladder structure 
On leaving the inner layer (7 B 1), the viscous terms in the governing equations 

are negligible. This requirement from the theoretical analysis of 4 6 is borne out 
by the trends of the numerical results, so we shall assume that above the wall 
layer a region exists in which the viscous terms remain small compared with the 
inertia terms. In  that event, two integrals of the governing equations can be 
written down. The best way of obtaining them is to use von Mises co-ordinates 
(r,  $), when, without any approximation, the governing equations may be 
written as 

and 

(7.1) 

If viscous terms are negligible, then the right-hand side of (7.2) may be neglected, 
and it may then be integrated to yield 

rv = a($), (7-3) 

G being an arbitrary function. The physical interpretation of (7.3) is that the 
angular momentum is conserved on a streamline. The form of G when $ is small 
must match with (6.9), the asymptotic expansion of rv when r] is large. 

On multiplying (7.1) by 2u, (7.2) by 2v/r and adding, we obtain 

If viscous forces are negligible for the radial flow also, then 

1 
nrZn 

u2+v2-- = F($) ,  (7.5) 
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where P is an arbitrary function of $. The physical interpretation of this result is 
that it is a version of Bernoulli's equation, n- lrZn being the effective reduced 
pressure in the boundary layer. The form of F when $ is small must match with 
the asymptotic expansion of the left-hand side of (7.5) in the inner layer when 7 is 
large. The contribution to the asymptotic expansion of u from the asymptotic 
expansion of v is taken care of by the term v2 in (7.5), so that F is explicitly 
independent of (6.9). There will clearly be contributions from the eigenfunctions 
of $, (6.12), and from the asymptotic structure of 9, (6.3). No interaction terms 
will be present, because the inviscid term in (7.1) is linear in u2. We conclude that 

m 

where pi, i 2 1, are the eigenvalues (6.11); the C,, i 2 1, are constants to be found, 
,uo = 0 and Co = - 1-433, if n = &, from (6.3). 

If we knew F and G explicitly, another integral would follow on writing 
u = r-la&/az. SO that 

and a single integration would give $ as a function of z and r. It follows from (7.7) 
that < 1 when r < 1, so we can replace F and G by the leading terms of their 
asymptotic expansion, whence 

In turn, (7.8) shows that 191 cannot become too small, for - $ has a minimum 
value O(r(3-n)jz). This condition is consistent with the known property of $ on 
leaving the inner layer, namely that ( -  $)r-(3-n)/2 = -Y $ 1. In  fact, we see 
that, as r+ 0, the term proportional to Co may be neglected, and then (7.8) leads 
to a similarity form for $, viz. 

$ = rl-n+PH(Z), (7.9a) 

where 2 = x/rP, 

1 
n 

and H'2 = - - A;( - H)4(h1+l--n)/(3--n), (7.96) 

with H ( 0 )  = 0. Hence 2 is given in terms of H as the incomplete Beta function 

Further, from (7.5), recognizing that F($)+O as r+O with 2 fixed, we find 
that 

rnv N {k - [ ~ ( ~ ) 1 2 ) 1 .  (7.10) 

Thus, as 2 increases from zero, so does u = r-"H'(Z), until at 2 = 2* ( = 3.282 for 
n = 4) u becomes positive. We have now arrived at  a new situation in which the 
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velocity profile is no longer a terminal profile, but must be assigned at the termi- 
nating line r = rE of the numerical integration. 

For Z < Zg conditions are not prescribed at rE,  since u < 0 there, so we can 
confidently expect a favourable comparison between this asymptotic theory and 
the numerical solution. This proves to be the case, as may be seen from figure 11, 
in which we draw the calculated values of r: u as functions of 2 at various values 
of r (taking n = 4 witha = 0.281), and figure 12, in which we draw the calculated 
values of r:v and compare with H'(Z) .  In both graphs the velocity profiles are 
clearly asymptoting to the expected limits. 

When u > 0 (i.e. for a range of values of Z > Zg), the form of the solution 
depends on the boundary conditions imposed on (u, v) at  r = r,. As explained in 
$5, various conditions were used in the computation, and the most consistent 
was that which assumed that the velocity profiles are self-similar with similarity 
parameter Z = z/rP. The numerical solutions obtained with this condition were 
used in drawing figures 11 and 12. We see that the favourable comparison between 
the asymptotic theory and the numerical computation, already noticed when 
2 < Za, extends to the values of 2 > Z+ as well. 

According to (7.8) or (7.9b), rnu increases from the value -n-i at Z = 0 until 
it reaches the value + n-* a& Z = 2, ( = 6.565 for n = t),  when r-l+n-B$ = H is 
zero once more. Viscous forces must now become important, for otherwise 
there would have to be an unacceptable change in the sign of 4, and we can 
expect a rapid transition in rnu back to the value - n-4, through a shear layer 
similar in structure to (6.1), (6.2). The only difference is that the boundary 
conditions are changed to 

where rl = ( x  - Z,r~)/r(l+n)jz is the new independent variable, C(O) is the constant 
defined in (6.3), and C(l) is to be found. A numerical integration taking n = 4 
showsthat asolutionto (6.2a) and(7.11)existswiththepropertiesYJ(0) = - 1.125 
Y"(0) = - 0.594 where, without loss of generality, we have taken "'(0) = 0 (see 
figure 13). The appropriate value of C(O) is 0.384 and the computed value of C(l) is 
0.745, greater than C(O). A viscous transition also occurs in v, with a structure 
similar to that given by (6.4), (6.5). The only differences are that Y now satisfies. 
(7.11), h = h,, and the boundary conditions on yA  change to 

Here A(O) is the constant A, defined in (6.8), and A(l) has to be found. For n = &, 
A(O) = 0.790, and A(1) is computed to be 1.195. 

The vertical velocity in this transitional layer is given by 

rw = - (7.13) 
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FIGURE 13. Terminal velocity profiles in the lowest free shear layer, n = 0.5. Curve (i), 
lower scale; curve (ii), upper scale. 

Since rnu = Y‘(rl), we see that, as r-+ 0,  w/u-tpZ,rP’-l, which is just the slope 
of the transitional layer. This property of w was noted at the end of $5. 

In  figure 4 the significance of the curves on which u = 0 is now clear. These 
represent alternately the midpoints of the thick inviscid regions and those of the 
thin free viscous layers in the ladder structure. In  particular, the point where 
u = 0 in the Iowest inviscid region corresponds to 2 = 3.282. The lowest free 
viscous shear layer is centred at the discontinuity of the inviscid structure at 
2 = 6.565, and for convenience is compared with the locus of points for which 
u = 0. The comparison is good a t  bothlevels, although slightlybetter at 2 = 3.282. 
It may be noted that, near Z = 3.282, our use of boundary condition (1.2) with 
p” = 0.281 in the numerical calculation is correct, but near Z = 6.565 two values of 

would be required by the asymptotic structure: p = 0.281 in the inviscid region 
where f > 0, aflac > 0,  and p = 0.750 in the viscous region where f > 0, aflac < 0. 
This slight inconsistency appears to be of little consequence, since the displace- 
ment of the u = 0 curve in figure 4 from 2 = 6.565 is only about twice the dis- 
placement of the point u = 0 from the minimum of v in the free viscous layer, 
shown in figure 13. 

On increasing Z beyond the neighbourhood of Z,, the viscous forces die out, 
and there is a repetition of the behaviour of u , v  in the interval 0 < Z < Z,, 
except that C(O) and A(@ are now to be associated with and A(,). The process 
continues indefinitely with each viscous transition increasing the value of C 



780 R. J .  Bebher, 0. R. Burggraf and K.  Stewartson 

and A and also the minimum value of - $ and v. Thus, there is a modulation in 
the cycle of rnu versus rnv, which presumably decays as Z 3 00, in some sense, into 
the point rnu = 0, rnv = 1. A more detailed discussion of the decay will be given 
elsewhere. 

The authors are grateful to the computer centre of The Ohio State Univer- 
sity for making time available on the IBM 360175 digital computer. 
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